
Energy-Efficient D2D Underlaid MIMO Cellular
Networks with Energy Harvesting

Chi-Han Lee∗†, Ronald Y. Chang†, Chun-Tao Lin‡, and Shin-Ming Cheng∗†
∗Department of Computer Science and Information Engineering,

National Taiwan University of Science and Technology, Taipei, Taiwan
†Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

‡Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
d10202006@mail.ntust.edu.tw, rchang@citi.sinica.edu.tw, ctl@ntut.edu.tw, smcheng@mail.ntust.edu.tw

Abstract—This paper considers the precoder design for energy-
efficient data transmissions in energy harvesting (EH)-aided
device-to-device (D2D) communications underlaid multiple-input
multiple-output (MIMO) cellular networks. We aim to maximize
the energy efficiency (EE) of the network, defined as the ratio
of the system sum rate to the system power consumption,
under EH and transmit power constraints for both cellular
and D2D users. The considered problem is nonconvex due to
the concave-convex and fractional form of the objective. We
propose to apply the concave-convex procedure (CCCP) and
the Dinkelbach method to find tractable, approximate solutions.
Numerical results demonstrate the performance of the proposed
method from various perspectives.

I. INTRODUCTION

Spectral efficiency and energy efficiency (EE) are two
important performance metrics in wireless communication
systems. Since device-to-device (D2D) communication [1], [2]
has been shown promising in increasing the system transmis-
sion rates and spectral efficiency, it is essential to study the
EE of D2D-enabled communication systems. In [3], the EE
and spectral efficiency tradeoff in a D2D-enabled heteroge-
neous network (HetNet) was investigated. In [4], distributed
resource allocation based on a game-theoretic approach was
studied, where the EE of D2D-enabled cellular networks
was optimized. In [5], mode switching/selection among three
transmission modes for energy-efficient D2D communications
in cellular networks was examined. In [6], the D2D commu-
nication underlaying cellular networks was considered and the
branch-and-bound algorithm was adopted to achieve energy-
efficient resource allocation.

The energy harvesting (EH) technology [7], [8] enables the
receivers to charge the batteries by recycling the radio fre-
quency (RF) energy radiated from the transmitters. EH-aided
D2D communication has been studied [9]–[13]. In [9], a radio
resource allocation scheme that maximizes the sum-rate in EH-
aided D2D communication underlaying the cellular network
was investigated. In [10], wireless-powered D2D communi-
cation in a time division duplex (TDD) underlaying cellular
network for improving the spectrum efficiency was examined.
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In [11], the spectral efficiency and coverage probability of
EH-based D2D-assisted machine-type communications under
spatially correlated interference using stochastic geometry was
studied. In [12], the joint partner selection and power control
problem between cellular users and D2D pairs was studied by
considering EH capabilities at the cellular users. In [13], the
power allocation problem and beamforming design for EH-
aided D2D communications underlaid cellular networks was
studied.

In multiantenna systems, the system performance can be sig-
nificantly improved via the precoding (multistream beamform-
ing) technique. In this paper, we study the precoder design for
EE maximization in D2D underlaid multiple-input multiple-
output (MIMO) cellular networks with EH-enabled cellular
and D2D users, which has not been previously considered.
This problem is challenging to solve due to the inherent non-
convexity of concave-convex fractional programming [14]–
[16]. We propose a novel design to overcome the difficulty.
First, first-order Taylor approximation is applied to the convex
term of the concave-convex programming (CCCP). Then, the
Dinkelbach method is exploited to address the fractional form
in the EE maximization. Finally, we propose to use a bisection
algorithm so that the optimal precoders can be solved with
convex optimization tools, e.g., CVX [17].

The outline of this paper is as follows. Sec. II introduces
the system model. Sec. III presents the problem formulation.
Sec. IV describes the proposed method. Sec. V presents the
simulation results. Finally, conclusions are drawn in Sec. VI.

Notations: Bold lowercase and uppercase letters represent
vectors and matrices, respectively. AT and AH denote stan-
dard and Hermitian transpose of A, respectively. |A| and
Tr(A) denote the determinant and trace of A, respectively.
A ≽ 0 means that A is a positive semidefinite matrix. ∇f(X)
is the gradient of f(X). Cm×n is the complex space of m×n
matrices.

II. SYSTEM MODEL

Consider a D2D-underlaid downlink MIMO cellular net-
work, as shown in Fig. 1. The network consists of one base
station (BS), K cellular user equipments (CUEs), and L pairs
of D2D user equipments (DUEs). Let NC

t be the number



Fig. 1. A D2D-underlaid downlink MIMO cellular network with EH-enabled
receivers.

of antennas at the BS, ND
t the number of antennas at each

transmitting terminal of DUE pairs, and Nr the number of
antennas at each CUE and at each receiving terminal of DUE
pairs. Let K = {1, . . . ,K} and L = {1, . . . , L} represent the
set of CUEs and DUE pairs, respectively.

A. Information Rate

Let Wksk be the transmitted signal from the BS to the kth
CUE, where Wk ∈ CNC

t ×mk is the linear precoder employed
at the BS for the kth CUE, and sk ∈ Cmk is the data symbol
vector (where E[sksHk ] = I), with mk being the number of
data streams. Let xℓ ∈ CND

t ×1 be the transmitted signal from
the transmitter to the receiver of the ℓth DUE pair. Then, the
received signal at the kth CUE is given by

yC
k = HBS

k

K∑
i=1

Wisi +

L∑
ℓ=1

Gℓ
kxℓ + nC

k

= HBS
k Wksk︸ ︷︷ ︸

desired signal

+HBS
k

K∑
i=1,i̸=k

Wisi︸ ︷︷ ︸
CUE interference

+

L∑
ℓ=1

Gℓ
kxℓ︸ ︷︷ ︸

DUE interference

+ nC
k︸︷︷︸

noise

, k ∈ K (1)

where HBS
k ∈ CNr×NC

t is the channel from the BS to the
kth CUE, Gℓ

k ∈ CNr×ND
t is the channel from the transmitter

of the ℓth DUE pair to the kth CUE, and nC
k ∈ CNr×1 ∼

CN (0, σ2
kI) is the complex additive white Gaussian noise

(AWGN).
Each receiving CUE/DUE has RF-EH capabilities and there-

fore can harvest energy from the useful signal as well as
interference based on the power splitting technique [8]. The
power-splitting factor for information decoding (ID) is denoted
by ρCk for the kth CUE and ρDℓ for the receiver of the ℓth
DUE pair (thus, the power-splitting factor for EH at the

corresponding receiver is 1 − ρCk and 1 − ρDℓ , respectively).
After power splitting, the signal for ID at the kth CUE is

ỹC
k =

√
ρCk y

C
k + ñC

k , k ∈ K (2)

where ñC
k ∼ CN (0, σ̃2

kI) denotes the additive noise at the
ID receiver, which is independent of nC

k . Then, the sum
information rate for all CUEs can be expressed as

RC =

K∑
k=1

log2

∣∣∣∣I +Ω−1
k HBS

k Qk(H
BS
k )H

∣∣∣∣
=

K∑
k=1

log2

∣∣∣∣ K∑
i=1

HBS
k Qi(H

BS
k )H +

L∑
ℓ=1

Gℓ
kPℓ(G

ℓ
k)

H +ΦC
k

∣∣∣∣∣∣∣∣ K∑
i ̸=k

HBS
k Qi(HBS

k )H +
L∑

ℓ=1

Gℓ
kPℓ(Gℓ

k)
H +ΦC

k

∣∣∣∣
(3)

where Ωk =
K∑
i ̸=k

HBS
k Qi(H

BS
k )H +

L∑
ℓ=1

Gℓ
kPℓ(G

ℓ
k)

H + ΦC
k ,

Qk = WkW
H
k , Pℓ = E[xℓx

H
ℓ ], and ΦC

k = σ2
kI +

σ̃2
k

ρC
k

I . Note
that in deriving (3), we have used the properties |CD| =
|C||D| and |C−1| = |C|−1.

The information rates for DUEs can be modeled similarly.
The received signal at the receiver of the ℓth DUE pair is given
by

yD
ℓ =

L∑
j=1

Hj
ℓxj +GBS

ℓ

K∑
k=1

Wksk + nD
ℓ , ℓ ∈ L (4)

where Hj
ℓ ∈ CNr×ND

t is the channel from the transmitter of
the jth DUE pair to the receiver of the ℓth DUE pair, GBS

ℓ ∈
CNr×NC

t is the channel from the BS to the receiver of ℓth
DUE pair, and nD

ℓ ∈ CNr×1 ∼ CN (0, σ2
ℓI) is the complex

AWGN. After power splitting, the signal for ID at the receiver
of the ℓth DUE pair is

ỹD
ℓ =

√
ρDℓ y

D
ℓ + ñD

ℓ , ℓ ∈ L (5)

where ñD
ℓ ∼ CN (0, σ̃2

ℓI) denotes the additive noise at the ID
receiver, which is independent of nD

ℓ . The sum information
rate for the receivers of all DUE pairs is given by

RD =

L∑
ℓ=1

log2

∣∣∣∣ L∑
j=1

Hj
ℓPj(H

j
ℓ )

H +
K∑

k=1

GBS
ℓ Qk(G

BS
ℓ )H +ΦD

ℓ

∣∣∣∣∣∣∣∣ L∑
j ̸=ℓ

Hj
ℓPj(H

j
ℓ )

H +
K∑

k=1

GBS
ℓ Qk(GBS

ℓ )H +ΦD
ℓ

∣∣∣∣
(6)

where ΦD
ℓ = σ2

ℓI +
σ̃2
ℓ

ρD
ℓ

I .



B. Harvested Energy

The harvested energy at the kth CUE and at the receiver of
the ℓth DUE pair are given respectively by

EC
k = E

[∥∥∥√µC
k y

C
k

∥∥∥2] = µC
kE

[
Tr

(
yC
k (y

C
k )

H
)]

= µC
kTr

( K∑
i=1

HBS
k Qi(H

BS
k )H +

L∑
ℓ=1

Gℓ
kPℓ(G

ℓ
k)

H + σ2
kI

)
,

(7)

ED
ℓ = E

[∥∥∥√µD
ℓ y

D
ℓ

∥∥∥2] = µD
ℓ E

[
Tr

(
yD
ℓ (y

D
ℓ )

H
)]

= µD
ℓ Tr

( L∑
j=1

Hj
ℓPj(H

j
ℓ )

H +

K∑
k=1

GBS
ℓ Qk(G

BS
ℓ )H + σ2

ℓI

)
(8)

where µC
k = ξCk (1 − ρCk ) and µD

ℓ = ξDℓ (1 − ρDℓ ). ξ
C
k and ξDℓ

denote energy conversion efficiency at the kth CUE and at the
receiver of the ℓth DUE pair, respectively.

C. Network Power Consumption

Here, we model the total network power consumption which
includes the transmit power consumption and circuit power
consumption (due to frequency conversion (up/down), digital-
to-analog converter (DAC), analog-to-digital converter (ADC),
mixer, filter, etc.). The total power consumption at the BS is
given by

PTotal
C =

K∑
k=1

Tr(Qk) + P cir
BS (9)

where
∑K

k=1 Tr(Qk) and P cir
BS are the transmit power and

circuit power consumption at the BS, respectively. Likewise,
the total power consumption at the transmitters of all DUE
pairs is given by

PTotal
D =

L∑
ℓ=1

(
Tr(Pℓ) + P cir

ℓ

)
(10)

where Tr(Pℓ) and P cir
ℓ are the transmit power and circuit

power consumption at the transmitter of the ℓth DUE pair,
respectively.

III. PROBLEM FORMULATION

Our design objective is to maximize the EE, which is
defined as the ratio of the system sum rate to the system
total power consumption [3]–[5], [14], with harvested energy,
BS transmit power, and individual D2D transmit power con-
straints. The power-splitting factors ρCk and ρDℓ are assumed
to be predetermined constants [8], [13]. Mathematically, the
design problem is formulated as

max
{Qk},{Pℓ}

RC +RD

PTotal
C + PTotal

D

(11a)

s.t. EC
k ≥ EC

min,∀k ∈ K, (11b)

ED
ℓ ≥ ED

min,∀ℓ ∈ L, (11c)
K∑

k=1

Tr(Qk) ≤ PC
max, (11d)

Tr(Pℓ) ≤ PD
max,∀ℓ ∈ L, (11e)

Qk ≽ 0,∀k ∈ K, (11f)
Pℓ ≽ 0,∀ℓ ∈ L, (11g)

where (11b) and (11c) ensure that the harvested energy at the
kth CUE and at the receiver of the ℓth DUE pair be higher than
some threshold EC

min and ED
min, respectively; (11d) and (11e)

represent the BS transmit power constraint and the individual
DUE transmit power constraint, respectively; (11f) and (11g)
follow from the definition of Qk and Pℓ. Note that problem
(11) is a nonconvex problem due to the concave-convex form
in the numerator of the objective and the fractional form of
the objective. It is known that the precoder design for sum-
rate maximization (i.e., maximizing RC alone, without DUEs,
EH, or EE considerations) is an NP-hard problem [18], [19].
The considered problem here is more challenging since CUEs
and DUEs are coupled in the objective. Thus, it is practically
useful to find tractable, approximate solutions.

IV. PROPOSED ALGORITHM

We propose two efficient procedures to solve problem (11).
We apply the concave-convex procedure (CCCP) [20] to the
numerator of (11a) in the concave-convex form. Then, we
adopt the Dinkelbach method [15], [16], [21] to deal with
the nonconvex fractional form of (11a).

A. Concave-Convex Procedure (CCCP)

CCCP is based on the majorization-minimization method
and is widely used in statistics, signal processing, commu-
nications, and machine learning [22]. The main concept of
CCCP [20] is to iteratively linearize the convex part of the
concave-convex objective function. Specifically, for RC, we
perform the first-order approximation to the logarithm of the
denominator of (3) at each iteration, i.e.,

RC ≈
K∑

k=1

log2

∣∣∣∣ K∑
i=1

HBS
k Qi(H

BS
k )H +

L∑
ℓ=1

Gℓ
kPℓ(G

ℓ
k)

H +ΦC
k

∣∣∣∣−
K∑

k=1

(
log2 |Ω

(t)
k |+

1

ln(2)
Tr

[
(Ω

(t)
k )−1(Ωk −Ω

(t)
k )

])
, R′

C

(12)



where the summand in the second summation represents the
first-order approximation to the logarithm of the denominator
of (3) at the tth iteration, and

Ω
(t)
k =

K∑
i=1,i̸=k

HBS
k Q

(t)
i (HBS

k )H +

L∑
ℓ=1

Gℓ
kP

(t)
ℓ (Gℓ

k)
H +ΦC

k

(13)

denotes the value of Ωk at the tth iteration with {Qk} and
{Pℓ} given by {Q(t)

k } and {P (t)
ℓ }, respectively. The first-

order approximation to RD, denoted by R′
D, can be similarly

formulated. While RC + RD has been convexified through
CCCP, the resultant objective in (11a) is still nonconvex due
to the fractional form. Thus, we adopt the Dinkelbach method
to deal with the nonconvex fractional form of (11a).

B. Dinkelbach Method

For notational convenience, let U1(Qk,Pℓ) = R′
C + R′

D

and U2(Qk,Pℓ) = PTotal
C +PTotal

D . Then, after approximating
RC +RD by R′

C +R′
D, problem (11) becomes

max
{Qk},{Pℓ}

U1(Qk,Pℓ)

U2(Qk,Pℓ)
(14a)

s.t. (11b), (11c), (11d), (11e), (11f), (11g). (14b)

Define

α , U1(Qk,Pℓ)

U2(Qk,Pℓ)
. (15)

To exploit the Dinkelbach method [15], [16], [21], consider
the following theorem.

Theorem 1 The maximal value of α in (15), denoted by α∗,
is achieved if and only if

max
{Qk},{Pℓ}

U1(Qk,Pℓ)− α∗U2(Qk,Pℓ)

= U1(Q
∗
k,P

∗
ℓ )− α∗U2(Q

∗
k,P

∗
ℓ )

= 0, (16)

where (Q∗
k,P

∗
ℓ ) are the optimal solution of (14) for

U1(Qk,Pℓ) ≥ 0 and U2(Qk,Pℓ) > 0.

Proof: See Appendix A.
Using the result in Theorem 1, we can equivalently refor-

mulate (14) as the following optimization problem:

max
{Qk},{Pℓ},

{α}

U1(Qk,Pℓ)− αU2(Qk,Pℓ) (17a)

s.t. (11b), (11c), (11d), (11e), (11f), (11g). (17b)

Note that the joint optimization over Qk,Pℓ, and α in (17) is
very difficult due to non-convexity. Fourtunately, the problem
will be jointly convex with respect to (Qk,Pℓ) when α
is given. This property suggests a two-stage algorithm, as
elaborated below. First, we determine α with a bisection
algorithm. Then, with the given α, we solve problem (17)
and obtain the optimal Qk and Pℓ. The bisection algorithm is
terminated when the difference of α is small enough between

iterations. Finally, we adopt the the Cholesky decomposition
on Qk to obtain the optimal Wk for all k ∈ K. The overall
procedure is detailed in Algorithm 1.

Algorithm 1 Algorithm to Solve Problem (17)
1: Initialize:
2: Generate initial values for t← 0
3: Q

(t)
k = Q̂

(t)
k (Q̂

(t)
k )H for k ∈ K where Q̂

(t)
k is the random

i.i.d. complex Gaussian random variables with zero mean

and unit variance. Then, Q(t)
k =

Q
(t)
k

∥Q̂(t)
k ∥2

.

4: P
(t)
ℓ = P̂

(t)
ℓ (P̂

(t)
ℓ )H for ℓ ∈ L where P̂

(t)
ℓ is the random

i.i.d. complex Gaussian random variables with zero mean

and unit variable. Then, P (t)
ℓ =

P
(t)
ℓ

∥P̂ (t)
ℓ ∥2

.
5: repeat
6: Given an interval [αmax, αmin], tolerance ϵ > 0
7: while (αmax − αmin) > ϵ do
8: α = (αmax − αmin)/2
9: Solve problem (17).

10: if The above problem is feasible then
11: αmin = α
12: else if then
13: αmax = α
14: end if
15: end while
16: t← t+ 1
17: Update: Q(t)

k = Q∗
k and P

(t)
ℓ = P ∗

ℓ

18: until Convergence
19: Apply the Cholesky decomposition to Q∗

k to find the
precoder W ∗

k .

We next explore the convergence behavior of the proposed
algorithm. If the objective function (17a) is strictly mono-
tonically increasing, then the convergence characteristics of
a CCCP plus Dinkelbach method can be guaranteed. This is
established in the following theorem.

Theorem 2 Suppose that problem (17) is feasible. Then, the
objective function (17a) is strictly monotonically increasing
with the algorithmic iterations in Algorithm 1 unless Q(t+1)

k =

Q
(t)
k and P

(t+1)
ℓ = P

(t)
ℓ .

Proof: See Appendix B.

V. SIMULATIONS RESULTS

In simulations, execution of Algorithm 1 entails a triple-
nested loop. The outer loop is to remove the fractional form of
the original nonlinear fractional problem for better tractability,
the middle loop is CCCP for sequential convex approximation,
and the inner loop is the interior point method for convex
optimization.

We simulate an EH-enabled D2D underlaid MIMO cellular
network with K = 1 CUE and L = 3 pairs of DUEs,
as depicted in Fig. 2. The CUE and DUE transmitters are
uniformly distributed in a 50 × 50 m2 area. The distance
between the DUE transmitter and the paired DUE receiver is
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Fig. 2. Network topology with K = 1 and L = 3.
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Fig. 3. Convergence behavior of the proposed algorithm, with PC
max = 46

dBm, PD
max = 10 dBm, EC

min = ED
min = −20 dBm, K = 1, and L = 3.

10 m. The channel is modeled as (d)−3δ, where d represents
the distance in meters between the receiver and the transmitter,
and δ ∼ CN (0, 1) is the Rayleigh fading coefficient. We
set the thermal noise variances σ2

k = σ2
ℓ = −70 dBm, the

variances of the circuit noises introduced at the information
decoder σ̃2

k = σ̃2
ℓ = −50 dBm, numbers of antennas

NC
t = 4, ND

t = 2, Nr = 2, the maximum transmit
power at the BS PC

max = 46 dBm, the maximum transmit
power at each transmitting DUE PD

max = 10 dBm, the target
harvested energy EC

min = ED
min = −20 dBm, the circuit

power consumption at the BS P cir
BS = 3.1622 mW, the circuit

power consumption at the transmitter of the ℓth DUE pair
P cir
ℓ = 1.9952 mW [14], the power-splitting factor at all

devices ρCk = ρDℓ = ρ = 0.5,∀k, ℓ, and the energy conversion
efficiency ξCk = ξDℓ = 1,∀k, ℓ. The stopping threshold in
the bisection method is given as 10−6. All the results are
obtained by averaging a sufficient number of matrix channel
realizations.

Fig. 3 illustrates the convergence behavior of Algorithm 1.
The result verifies Theorem 2 and shows that Algorithm 1
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Fig. 4. EE vs. the power-splitting factor, with PD
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2 3 4 5

Number of Antennas

0

10

20

30

40

50

60

70

80

E
E

 (
bi

ts
/H

z/
J)

E
min
C  = E

min
D

E
min
C  = E

min
D

E
min
C  = E

min
D
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max = 46 dBm,
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max = 10 dBm, K = 1, and L = 3.

converges in few iterations.
Fig. 4 plots the EE vs. the power-splitting factor perfor-

mance. The figure shows a monotonic decrease in the EE
with an increasing power-splitting factor ρ. This is because,
when ρ increases, more power is directed to information
decoding and thus the system sum rate increases. However,
when ρ increases, the amount of harvested energy decreases,
and thus to meet the EH constraint higher transmit power is
needed, resulting in higher total system power consumption.
The overall effect is EE reduction. When PC

max increases or
when EC

min = ED
min increases, EE decreases for a given ρ.

This is because meeting a higher EH demand requires more
transmit power from the BS, which in turn reduces the system
EE.

Fig. 5 plots the EE vs. the number of antennas at the
BS performance. As can be seen, EE increases with an
increasing number of antennas at the BS (assuming the same
circuit power consumption). It is also observed here that
when EC

min = ED
min increases, EE decreases, as explained

previously.



VI. CONCLUSION

In this paper, we have studied the EE maximization problem
in EH-based D2D communication underlaid MIMO cellular
networks. The objective was to find the optimal precoders at
the BS and power allocation at the transmitting DUEs such
that the system EE performance can be maximized under EH
and transmit power constraints. The optimization problem was
formulated as a nonlinear fractional programming problem.
We approached this problem by using the CCCP and the
Dinkelbach method. Numerical experiments demonstrated the
performance of the proposed method, including the tradeoff
between the network EE and the target harvested energy.

APPENDIX A
PROOF OF THEOREM 1

First, we verify the necessary condition based on [21], [23].
For any feasible α, we have

α∗ =
U1(Q

∗
k,P

∗
ℓ )

U2(Q∗
k,P

∗
ℓ )
≥ U1(Qk,Pℓ)

U2(Qk,Pℓ)
(18)

Rearranging (18) leads to

U1(Q
∗
k,P

∗
ℓ )− α∗U2(Q

∗
k,P

∗
ℓ ) = 0, (19)

U1(Qk,Pℓ)− α∗U2(Qk,Pℓ) ≤ 0. (20)

Thus, the maximum value of U1(Qk,Pℓ)− α∗U2(Qk,Pℓ) is
0, and is achieved by α∗, which is obtained by solving the
EE maximization problem defined in (14). This completes the
necessity proof.

To show sufficiency, suppose that {Q̃k, P̃ℓ} is the optimal
solution to problem (14) which satisfies

U1(Qk,Pℓ)− α∗U2(Qk,Pℓ) ≤
U1(Q̃k, P̃ℓ)− α∗U2(Q̃k, P̃ℓ) = 0. (21)

By rearranging (21), we obtain

α∗ =
U1(Q̃k, P̃ℓ)

U2(Q̃k, P̃ℓ)
≥ U1(Qk,Pℓ)

U2(Qk,Pℓ)
. (22)

Hence, {Q̃k, P̃ℓ} are also the solution of the EE maximization
problem defined in (14), i.e., {Q̃k, P̃ℓ} = {Q∗

k,P
∗
ℓ }. This

validates the sufficient condition.

APPENDIX B
PROOF OF THEOREM 2

For notational convenience, let Λ = [Qk,Pℓ] and Λ(t) =

[Q
(t)
k ,P

(t)
ℓ ]. Let f(Λ) denote the objective function (17a),

which can be rewritten as

f(Λ) = fconcave(Λ) + fconvex(Λ) (23)

where

fconcave(Λ) ,
K∑

k=1

log2

∣∣∣∣ K∑
i=1

HBS
k Qi(H

BS
k )H +

L∑
ℓ=1

Gℓ
kPℓ(G

ℓ
k)

H +ΦC
k

∣∣∣∣
+

L∑
ℓ=1

log2

∣∣∣∣ L∑
j=1

Hj
ℓPj(H

j
ℓ )

H +

K∑
k=1

GBS
ℓ Qk(G

BS
ℓ )H +ΦD

ℓ

∣∣∣∣,
(24)

and

fconvex(Λ) ,

−
K∑

k=1

(
log2 |Ω

(t)
k |+

1

ln(2)
Tr

[
(Ω

(t)
k )−1(Ωk −Ω

(t)
k )

])

−
L∑

ℓ=1

(
log2 |Ψ

(t)
ℓ |+

1

ln(2)
Tr

[
(Ψ

(t)
ℓ )−1(Ψℓ −Ψ

(t)
ℓ )

])
− α(PTotal

C + PTotal
D ) (25)

with

Ψ
(t)
ℓ =

L∑
j ̸=ℓ

Hj
ℓP

(t)
j (Hj

ℓ )
H +

K∑
k=1

GBS
ℓ Q

(t)
k (GBS

ℓ )H +ΦD
ℓ .

(26)

Without loss of generality, we omit the affine function
α(PTotal

C + PTotal
D ) in the following. When Λ(t+1) ̸= Λ(t),

we have

f(Λ(t+1)) = fconcave(Λ
(t+1)) + fconvex(Λ

(t+1))

> fconcave(Λ
(t+1))

+ fconvex(Λ
(t)) +∇fconvex(Λ(t))(Λ(t+1) − Λ(t))T

≥ fconcave(Λ
(t))−∇fconvex(Λ(t))(Λ(t+1) − Λ(t))T

+ fconvex(Λ
(t)) +∇fconvex(Λ(t))(Λ(t+1) − Λ(t))T

= fconcave(Λ
(t)) + fconvex(Λ

(t))

= f(Λ(t)) (27)

where the first (strict) inequality uses the fact that the first-
order Taylor approximation of a convex function is always a
global underestimation of the function, and the second inequal-
ity follows from solving problem (17), with the objective (17a)
being expressed as (23), at the tth iteration. This completes
the proof.
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